Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
JCI Insight ; 8(10)2023 05 22.
Article in English | MEDLINE | ID: covidwho-2299586

ABSTRACT

Neutrophilic inflammation characterizes several respiratory viral infections, including COVID-19-related acute respiratory distress syndrome, although its contribution to disease pathogenesis remains poorly understood. Blood and airway immune cells from 52 patients with severe COVID-19 were phenotyped by flow cytometry. Samples and clinical data were collected at 2 separate time points to assess changes during ICU stay. Blockade of type I interferon and interferon-induced protein with tetratricopeptide repeats 3 (IFIT3) signaling was performed in vitro to determine their contribution to viral clearance in A2 neutrophils. We identified 2 neutrophil subpopulations (A1 and A2) in the airway compartment, where loss of the A2 subset correlated with increased viral burden and reduced 30-day survival. A2 neutrophils exhibited a discrete antiviral response with an increased interferon signature. Blockade of type I interferon attenuated viral clearance in A2 neutrophils and downregulated IFIT3 and key catabolic genes, demonstrating direct antiviral neutrophil function. Knockdown of IFIT3 in A2 neutrophils led to loss of IRF3 phosphorylation, with consequent reduced viral catabolism, providing the first discrete mechanism to our knowledge of type I interferon signaling in neutrophils. The identification of this neutrophil phenotype and its association with severe COVID-19 outcomes emphasizes its likely importance in other respiratory viral infections and potential for new therapeutic approaches in viral illness.


Subject(s)
COVID-19 , Interferon Type I , Respiratory Distress Syndrome , Virus Diseases , Humans , Neutrophils , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
2.
BMJ Open ; 12(6): e060664, 2022 06 06.
Article in English | MEDLINE | ID: covidwho-1879135

ABSTRACT

INTRODUCTION: The COVID-19 pandemic brought an urgent need to discover novel effective therapeutics for patients hospitalised with severe COVID-19. The Investigation of Serial studies to Predict Your Therapeutic Response with Imaging And moLecular Analysis (ISPY COVID-19 trial) was designed and implemented in early 2020 to evaluate investigational agents rapidly and simultaneously on a phase 2 adaptive platform. This manuscript outlines the design, rationale, implementation and challenges of the ISPY COVID-19 trial during the first phase of trial activity from April 2020 until December 2021. METHODS AND ANALYSIS: The ISPY COVID-19 Trial is a multicentre open-label phase 2 platform trial in the USA designed to evaluate therapeutics that may have a large effect on improving outcomes from severe COVID-19. The ISPY COVID-19 Trial network includes academic and community hospitals with significant geographical diversity across the country. Enrolled patients are randomised to receive one of up to four investigational agents or a control and are evaluated for a family of two primary outcomes-time to recovery and mortality. The statistical design uses a Bayesian model with 'stopping' and 'graduation' criteria designed to efficiently discard ineffective therapies and graduate promising agents for definitive efficacy trials. Each investigational agent arm enrols to a maximum of 125 patients per arm and is compared with concurrent controls. As of December 2021, 11 investigational agent arms had been activated, and 8 arms were complete. Enrolment and adaptation of the trial design are ongoing. ETHICS AND DISSEMINATION: ISPY COVID-19 operates under a central institutional review board via Wake Forest School of Medicine IRB00066805. Data generated from this trial will be reported in peer-reviewed medical journals. TRIAL REGISTRATION NUMBER: NCT04488081.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Respiratory Insufficiency , Bayes Theorem , Humans , Pandemics , SARS-CoV-2 , Treatment Outcome
3.
J Crit Care ; 69: 153989, 2022 06.
Article in English | MEDLINE | ID: covidwho-1814662

ABSTRACT

PURPOSE: Acute lung injury associated with COVID-19 contributes significantly to its morbidity and mortality. Though invasive mechanical ventilation is sometimes necessary, the use of high flow nasal oxygen may avoid the need for mechanical ventilation in some patients. For patients approaching the limits of high flow nasal oxygen support, addition of inhaled pulmonary vasodilators is becoming more common but little is known about its effects. This is the first descriptive study of a cohort of patients receiving inhaled epoprostenol with high flow nasal oxygen for COVID-19. MATERIALS AND METHODS: We collected clinical data from the first fifty patients to receive inhaled epoprostenol while on high flow nasal oxygen at our institution. We compared the characteristics of patients who did and did not respond to epoprostenol addition. RESULTS: The 18 patients that did not stabilize or improve following initiation of inhaled epoprostenol had similar rates of invasive mechanical ventilation as those who improved or stabilized (50% vs 56%). Rates of mortality were not significantly different between the two groups (17% and 31%). CONCLUSIONS: In patients with COVID-19 induced hypoxemic respiratory failure, the use of inhaled epoprostenol with high flow nasal oxygen is feasible, but physiologic signs of response were not related to clinical outcomes.


Subject(s)
COVID-19 Drug Treatment , Noninvasive Ventilation , Respiratory Insufficiency , Cannula , Epoprostenol/therapeutic use , Humans , Noninvasive Ventilation/adverse effects , Oxygen , Oxygen Inhalation Therapy , Respiratory Insufficiency/therapy
5.
BMJ Open ; 11(5): e047790, 2021 05 25.
Article in English | MEDLINE | ID: covidwho-1376497

ABSTRACT

INTRODUCTION: Intubation-related complications are less frequent when intubation is successful on the first attempt. The rate of first attempt success in the emergency department (ED) and intensive care unit (ICU) is typically less than 90%. The bougie, a semirigid introducer that can be placed into the trachea to facilitate a Seldinger-like technique of tracheal intubation and is typically reserved for difficult or failed intubations, might improve first attempt success. Evidence supporting its use, however, is from a single academic ED with frequent bougie use. Validation of these findings is needed before widespread implementation. METHODS AND ANALYSIS: The BOugie or stylet in patients Undergoing Intubation Emergently trial is a prospective, multicentre, non-blinded randomised trial being conducted in six EDs and six ICUs in the USA. The trial plans to enrol 1106 critically ill adults undergoing orotracheal intubation. Eligible patients are randomised 1:1 for the use of a bougie or use of an endotracheal tube with stylet for the first intubation attempt. The primary outcome is successful intubation on the first attempt. The secondary outcome is severe hypoxaemia, defined as an oxygen saturation less than 80% between induction until 2 min after completion of intubation. Enrolment began on 29 April 2019 and is expected to be completed in 2021. ETHICS AND DISSEMINATION: The trial protocol was approved with waiver of informed consent by the Central Institutional Review Board at Vanderbilt University Medical Center or the local institutional review board at an enrolling site. The results will be submitted for publication in a peer-reviewed journal and presented at scientific conferences. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov Registry (NCT03928925).


Subject(s)
Critical Illness , Intubation, Intratracheal , Adult , Humans , Intensive Care Units , Multicenter Studies as Topic , Prospective Studies , Randomized Controlled Trials as Topic , Trachea
6.
Pacing Clin Electrophysiol ; 44(5): 814-823, 2021 05.
Article in English | MEDLINE | ID: covidwho-1140291

ABSTRACT

RATIONALE: Coronavirus disease 2019 (COVID-19) is associated with many clinical manifestations including respiratory failure and cardiovascular compromise. OBJECTIVES: We examine outcomes in critically ill individuals with COVID-19 who develop atrial tachyarrhythmias. METHODS: We collected data from electrocardiograms and the electronic medical record of COVID-19 positive (COVID+ ) and negative (COVID- ) individuals admitted to our medical intensive care unit between February 29 and June 28, 2020. We compared clinical and demographic characteristics, new onset atrial tachyarrhythmia, hemodynamic compromise following atrial tachyarrhythmia, and in-hospital mortality in COVID+ versus COVID- . Hemodynamic compromise was defined as having a new or increased vasopressor requirement or the need for direct current cardioversion for hemodynamic instability within 1 hour of atrial tachyarrhythmia onset. RESULTS: Of 300 individuals included, 200 were COVID+ and 100 were COVID- . Mean age was 60 ± 16 years, 180 (60%) were males, and 170 (57%) were African American. New onset atrial tachyarrhythmia occurred in 16% of COVID+ and 19% of COVID- individuals (P = .51). When compared to COVID- participants without atrial tachyarrhythmia, COVID+ individuals with new onset atrial tachyarrhythmia had higher mortality after multivariable adjustment (OR 5.0, 95% CI 1.9-13.5). New onset atrial tachyarrhythmia was followed by hemodynamic compromise in 18 COVID+ but no COVID- participants (P = .0001). COVID+ individuals with hemodynamic compromise after atrial tachyarrhythmia required increased ventilatory support at the time of atrial tachyarrhythmia onset. CONCLUSIONS: Atrial tachyarrhythmia is associated with increased mortality in critically ill individuals with COVID-19, especially those mechanically ventilated. Recognition of this could assist with clinical care for individuals with COVID-19.


Subject(s)
COVID-19 , Critical Illness , Adult , Aged , Arrhythmias, Cardiac , Female , Humans , Male , Middle Aged , SARS-CoV-2 , Tachycardia
SELECTION OF CITATIONS
SEARCH DETAIL